圖書資訊學博士教育:1930到2007的整體分析 / Library and Information Science Doctoral Education: The Landscape from 1930-2007
圖書資訊學博士教育:1930到2007的整體分析 / Library and Information Science Doctoral Education: The Landscape from 1930-2007
這是上一個學期圖書資訊學趨勢指定閱讀的一篇研究論文。這份研究分析了1930年到2007年的博士論文,並跟ALISE統計報告相比,發現圖資博士畢業人數眾多,但圖資教職中非圖資出身的比率卻很高的現象。
This is a course reading note. This research article analysised LIS dissetations by ALA-accredited schools between 1930 and 2007. One of results indicate that 78% of doctoral graduates not holding faculty positions.
參考書目 / Bibliography
Sugimoto, C. R., Russell, T. G., & Grant, S. (2009). Library and Information Science Doctoral Education: The Landscape from 1930-2007. Journal of Education for Library & Information Science, 50(3), 190-202. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=lih&AN=43928252&lang=zh-tw&site=ehost-live
摘要 / Abstract
To anticipate future trends for doctoral education in library and information science (LIS), we examine the historical progression and current landscape of doctoral degree programs in the United States and Canada. By providing a comprehensive rendering of the history and current state of LIS doctoral education, this work provides data not previously available. Data for this work come from MPACT, a database that provides listings of 3,014 LIS dissertations conferred by 38 ALA-accredited schools between 1930 and 2007. This work discusses degrees offered and focuses on changes in the landscape within the last ten years, in addition to an evaluation of schools that produce future faculty for ALISE institutions. Results confirm the health and activity of LIS doctoral programs in North America.
為了得知圖書資訊學(library and information, LIS,簡稱圖資)博士教育的未來趨勢,我們分析了美國與加拿大博士學位的歷史進展與現在的狀態。藉由全面綜合分析圖資學博士教育在歷史與現況的狀態,這篇文章展現了前所未見的研究資料。文獻分析的來源是來自MPACT,這是一個電子資料庫,蒐集了1930年到2007年間來自38所ALA認證學校的3,014篇圖資博士論文(dissertations)。這篇研究討論了博士學位資格的進展,並聚焦於近10年間的轉變,特別是跟ALISE機構評估學校教職的結果相互比較。最後結果確認了北美圖資博士教育的發展健全與活躍。
筆記 / Reading Note
關於作者 / About Author
最後附帶一提,作者Cassidy R. Sugimoto不僅研究都做很多這種數據統計的分析(甚至也會用複雜的LDA法呢!)之外,人也非常漂亮XD
(more...)
Comments