:::

行為分析之對數線性模式 / Log-Linear Sequential Analysis

行為分析之對數線性模式 / Log-Linear Sequential Analysis

image

這是繼行為分析之時間序列分析之後,對於分析超過二序列之上更長序列的分析方法對數線性模式(Log-linear model)的介紹。一開始是基於Bakeman與Quera在書中介紹的對數線性模式序列分析(log-linear sequential analysis),為了分析方便,我後面介紹的是使用SPSS實作的對數線性模式分析。但是我對於這個分析方法抱有高度疑惑,各書本對於對數線性模式分析方法不盡相同,而報表解讀也有許多漏洞。這一份對數線性模式分析的方法僅供記錄,並不建議真的這樣使用。

(more...)

時間序列分析與預測 / Time Series Analysis and Prediction

布丁布丁吃布丁

時間序列分析與預測 / Time Series Analysis and Prediction

image

這是伴隨在行為分析之時間序列分析的報告中,延伸細談時間序列分析的部分。投影片的內容是參考了林惠玲、陳正倉老師所著的「應用統計學」以及其他時間序列分析的相關書籍綜合而成。大部分時間序列分析的介紹仍是環繞著ARIMA技術的模型,後來我用Weka實作的多變項時間序列預測則採用了機器學習的另類做法。

(more...)

行為分析之時間序列分析 / Time Sequential Behavior Analysis

行為分析之時間序列分析 / Time Sequential Behavior Analysis

image

這是閱讀Bakeman兩本書中行為序列分析與時間相關的兩個章節「9. Analyzing time sequences」跟「11. Time-window and log-linear sequential analysis」的簡報內容。Bakeman將事件編碼的類別資料轉換成比率數字的連續變項,再結合了時間序列分析(Time-series analysis)技術進行處理。在另外一本書則是介紹高階列聯表分析技術線性對數模型(Log-Linear Analysis),可以分析超越雙事件到N事件的序列檢定。

(more...)

揭露文字資料的量化數值!文字探勘分析器 / A Text Analyzer for Text Mining

布丁布丁吃布丁

揭露文字資料的量化數值!文字探勘分析器 / A Text Analyzer for Text Mining

image

這是我為了文字探勘所做的小工具。一般來說文字資料是一種非結構的質性資料,但其實還是可以透過一些簡單的計算來得知它的量化數值,這樣就能讓不同的文字資料之間的比較有了客觀的基準。這個文字探勘分析器提供了基本的敘述統計指標計算功能,包括文字長度、不同字詞的數量、文字變化程度的熵(entropy)跟辛普森指數(Simposon's Index),還有以句子、對話句為單位的分析,最後還能將N字詞的頻率分析結果繪製成文字雲

(more...)

行為順序預測:動態貝氏網路 / Behavior Prediction: Dynamic Bayesian Network

行為順序預測:動態貝氏網路 / Behavior Prediction: Dynamic Bayesian Network

image

這是巨量資料探勘與統計應用課程行為順序檢定:滯後序列分析分類與預測:貝氏網路的進階應用。滯後序列分析只能分析前後兩個行為之間的轉變,如果我們想要預測更多步之後的行為,那我們就需要藉助貝氏網路的預測和推理能力。我們可以決定要為幾步內的行為進行建模,如果是兩步之間的模型,稱之為「二時段貝氏網路」(Two-Timeslice Bayesian Network,2TBN)。而這篇文章將以「四時段貝氏網路」來為幼兒平行遊戲事件序列資料,建立能夠預測和解釋幼兒行為的貝氏網路模型。

(more...)

巨量資料探勘與統計應用課程目錄 / Applications of Big Data and Statistics: Table of Contents

巨量資料探勘與統計應用課程目錄 / Applications of Big Data and Statistics: Table of Contents

image

這是巨量資料探勘與統計應用課程的投影片「巨量資料探勘與統計應用課程目錄」,也包含了整個課程一開始的導論。本課程的主要核心技術是「資料分析」,而資料分析則含括了「資料探勘」與「統計」這兩種領域,並且適用於處理龐大的「巨量資料」,因此本課程就命名為「巨量資料探勘與統計應用」。為了整理到本blog,我將本系列課程調整為11個單元,由淺入深分成「課程導論與資料處理」、「資料敘述級」、「資料檢定級」、「資料預測級」四大階段,每個單元內都包含該單元要處理的問題與適用資料類型、核心技術。由於當初是以大學生為教學對象,因此本系列課程主要著重在訓練同學擁有實作的即戰力,每個單元都是以二到四個實作學習單組成,輔以少量的公式解說。

這份投影片是巨量資料探勘與統計應用課程的整體介紹,文章也會列出每一個單元的連結。最後我會談談我對這門課程的看法。

(more...)

超簡單!文本機器分類入門 / Text Classification with Weka

超簡單!文本機器分類入門 / Text Classification with Weka

image

這篇「超簡單!文本機器分類入門」是我在2017年3月於政大圖檔所資料探勘課程中的演講內容,之後演化成後來我在巨量資料探勘與統計應用課程中「非結構化資料分析:文本分類」單元的內容。如果想要看比較完整的文本分類介紹,請看「非結構化資料分析:文本分類」這篇。不過想要看獨立的文本分類課程的話,那也可以從這篇開始看起喔。

(more...)