資料檢定級導論: 從數學到統計 / Inferential Statistics: An Introduction
資料檢定級導論: 從數學到統計 / Inferential Statistics: An Introduction
這是巨量資料探勘與統計應用課程的投影片「資料檢定級導論: 從數學到統計」。本單元是屬於系列課程中的「資料檢定級」,是銜接「資料敘述級」之後下一個階段的導言課程。許多人學習統計時,都知道統計分成敘述統計(descriptive statistics)跟推論統計(inferential statistics),前者很好理解,但為何需要推論統計?而這兩者又跟高中以前學的數學有什麼不一樣呢?
要理解推論統計,必須要先理解母體模型的概念。我們手邊看到的資料,在推論統計的框架中,它僅僅只是眾多樣本中的一次抽樣。因此我們在比較不同的樣本群時,注重的不是樣本的層次,而是樣本背後代表的母體模型。樣本對應到母體模型所計算出的檢定統計量,以及此檢定統計量可能出現的機率,才是推論統計的思維。
老實說,這個概念很難懂。因此我試著用自己的方式來詮釋這套思維,並在之中強調「檢定統計量」的核心概念,希望能讓同學比較容易理解推論統計的運作方式。因為本篇只是導言,並沒有任何練習內容或測驗。
(more...)
Comments